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We have derived a formula for the rate of thermophoresis of a volatile drop of a concentrated solution
in a binary gaseous mixture with allowance for known effects that are associated with all types of
slipping of the gaseous mixture along the drop surface and jumps of temperature and concentrations.
An analysis of this formula has been performed for a number of limiting cases.

A drop of a binary solution that consists of molecules of a solute and a volatile solvent substance is
considered. Molecules of the volatile substance can evaporate or condense on the drop surface.

The drop is suspended in a two-component gaseous mixture with a temperature gradient (∇ Te)∞ pre-
scribed at infinity. The first component of the gaseous mixture is composed of molecules of vapor of the sol-
vent of the drop, while the molecules of the second component of the mixture do not undergo phase transitions
on the drop surface.

By virtue of the smallness of the relative temperature differences in the vicinity of the drop, we will
consider the transfer coefficients (the coefficients of viscosity, thermal conductivity, and diffusion) to be con-
stant quantities.

The motion will be described within the framework of approximations of [1, 2]. The basic approxima-
tion is a condition for linearization of the equations of hydrodynamics, heat conduction, and diffusion that de-
scribe the distribution of velocities and concentrations outside and inside the particle. The nonlinear terms in
these equations are much smaller the linear ones on condition that R|(∇ Te)∞/T| << 1. For actual aerosol systems
this condition is realized with a large margin. For example, with radii of the aerosol particles in the range of
10−6 m << R << 100⋅10−6 m and with temperatures of Te ≈ 300 K, in order to violate the indicated condition,
∇ Te must vary in the range of 3⋅106 K/m << |(∆Te)∞| << 3⋅108 K/m. Under actual conditions such temperatures
are impracticable. Therefore, linearization of the equations is legitimate. To solve the problem, we use a spheri-
cal coordinate system (r, Θ, ϕ) whose origin is rigidly tied to the center of the particle (see Fig. 1). The rate
of thermophoresis is Uth = −U.

The distributions of the mass velocity v, pressure p, and temperature T outside and inside the drop are
described by the system of linearized equations [1, 2]

ηe ∇
2 v(e) = ∇ p(e) ,   ηi ∇

2 v(i) = ∇ p(i) ;

div v (e) = 0 ,   div v (i) = 0 ;

∇ 2 Te = 0 ,   ∇ 2 Ti = 0 ;

∇ 2 C1e = 0 ,   ∇ 2 C1i = 0 .

(1)
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The index e refers to quantities that characterize the medium outside the drop, and the index i, inside the drop.
In Eqs. (1) ηe and ηi are the coefficients of dynamic viscosity; C1e = n1e

 ⁄ ne; C2e = n2e
 ⁄ ne; ne = n1e + n2e; C1i

= m1n1i
 ⁄ ρ0i; C3i = m3in3i

 ⁄ ρ0i; ρ0i = m1n1i + m3n3i; C1e + C2e = 1; C1i + C3i = 1.
Solutions of Eqs. (1) can be found with the following conditions at infinity:
a) the radial vr

(e) and tangential vΘ
(e) components of the mass velocity at r → ∞ are, respectively, 

vr
(e) = _U_ cos Θ ,   vΘ

(e) = _U_ sin Θ ; (2)

b) the pressure at r → ∞ is

p(e) = p0
(e) ; (3)

c) the temperature at r → ∞ is

Te = T0e + _(∇ Te)∞_ r cos Θ ; (4)

d) the relative concentration at r → ∞ is

C1e = C01e . (5)

On the surface of the spherical drop of radius R the following boundary conditions are fulfilled:
a) slipping of the gaseous mixture on the interface of drop−external medium [1]
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in condition (6) the terms containing cm
∗ , kTsl

∗ , and kDsl allow for isothermal, thermal, and diffusion slipping; the
terms containing βR

∗( T) and βR
∗( D) allow for the influence of the curvature and deformation of the temperature

Fig. 1. Aerosol particle in a spherical coordinate system whose origin co-
incides with the center of the particle.
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field; the terms containing βR
′∗( T) and βR

′∗( D) allow for the influence of just the curvature of the temperature field;
the terms containing βB

∗( T) and βB
∗( D) allow for the influence of the Barnett effects on the mixture slipping; the

coefficients σT and σC are determined from the formulas [3]
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b) continuity of the radial and tangential components of the total-stress tensor:
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in conditions (7) and (8) the terms containing ∂σ ⁄ ∂C1i, ∂σ ⁄ ∂T, and σ ⁄ R take into account the influence of the
surface tension on the particle motion;

c) continuity of the radial flux of the first (volatile) component at each point of the drop surface
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condition (9) is written without allowance for the volume thermal diffusion or spreading of the molecules of
the first component of the gaseous mixture in the Knudsen layer;

d) impermeability of the drop surface to the second component of the external binary mixture
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condition (10) is written without allowance for the volume diffusion or spreading of the molecules of the sec-
ond component in the Knudsen layer;

e) impermeability of the drop surface to the substance dissolved in the drop
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f) continuity of the radial heat flux through the drop surface
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condition (12) is written without allowance for spreading of the heat flux in the Knudsen layer;
g) the temperature jump of the first (volatile) component of the gaseous mixture in the Knudsen layer
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where kT
(T) and kT

(n) are the coefficients of the temperature jump and the relative concentration;
h) the jump of the relative concentration of the first component of the gaseous mixture in the Knudsen

layer
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where kn
(n) and kn

(T) are the coefficients of the jump of the relative concentration and the temperature.
In the boundary conditions (6)-(14), σ(C1i, Ti) and Φ(C1i, Ti) are the coefficient of surface tension and

the relative concentration of saturated vapor of the volatile component, which depend on the values of C1i and
Ti at each point of the drop surface; D12

(e) and D13
(i) are the coefficients of interdiffusion of the gaseous mixture

and the solution; cm
∗ , βR

∗( T), βR
′∗( T), βB

∗( T), kn
(n), kn

(T), kT
(n), and kT

(T) are coefficients for the two-component gaseous
mixture with arbitrary ratios of the masses and concentrations of the components whose analytical form and
computational procedure are presented in [1, 3-16].

All the boundary conditions at large distances from the surface and on the particle surface itself, with
allowance for all effects that are associated with the presence of the Knudsen layer, in the case of thermopho-
resis of moderately large drops of concentrated solutions are given in the monograph [1].

Similar boundary conditions were used in [2] to construct a theory of thermophoresis of the same
drops. However, the boundary conditions and the result for the rate are represented there in a form that is valid
for the case where C1e << C2e. Therefore, in this work we use boundary conditions that correspond to [1],
which gives a more general form for the rate of thermophoresis than in [2]. It should also be noted that in this
work, as compared to [1], the dependence of the surface-tension coefficient on the concentration is taken into
account in formulas (7) and (8).

Solutions of Eqs. (1) are sought in the form [1]
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Ti = T0i + µ2 r cos Θ , (16)
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By substituting functions (15)-(24) into the boundary conditions (6)-(14), it is possible to find the quan-
tities ϕ1, ϕ2, µ1, µ2, µ3, µ4, Ae, Be, γe, Qi, Di, and |U|.

The objective of the investigations carried out is to determine the rate Uth = −U; therefore, without
giving unwieldy expressions for the remaining enumerated quantities, for Uth we write
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Formula (25) provides the possibility of determining the rate of thermophoresis of the solution drop for an
arbitrary concentration C3i of the dissolved substance. When C3i → 0, this formula becomes an expression for
the rate of thermophoresis of moderately large volatile drops of a pure substance:
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Rχi




 ;

f2
 (0) = 1 + 

2kn
(n)

R
 + 

2∂Φ
∂Ti

 
Lm1m2ne

2D12
(e)

ρ0e χi
 ;

f3
 (0) = 




1 + 

2kn
(n)

R




 



1 − 

kT
(T)

R
 − 

χe

χi




 + 

2kn
(T)

T0eR
 




Lm1m2ne
2D12

(e)

ρ0eχi
 + 

T0ekT
(n)

R




 −

− 
2∂Φ
∂Ti

 







− 1 + 

kT
(T)

R




 
Lm1m2ne

2D12
(e)

ρ0e χi
 − 

T0ekT
(n)χe

Rχi




 ;
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f4
 (0) = 




1 + 

2kn
(n)

R




 
χe

χi
 − 

2D12
(e)Lm1m2ne

2kn
(T)

T0e R ρ0e χi
 ;

f6
 (0) = 

kn
(T)

T0eR
 + 

∂Φ
∂Ti

 
χe

χi
 ;

g(0) = 1 + 
2kn

(n)

R
 + 

2kT
(T)

R
 + 

4kn
(n)kT

(T)

R2  + 
2χe

χi

 + 
4kn

(n)

R
 
χe

χi

 −

−   
4kn

(T)

R
 
Lm1m2ne

2D12
(e)

T0e ρ0e χi

 − 
4kT

(n)kn
(T)

R2  + 
2∂Φ

∂Ti

 
Lm1m2ne

2D12
(e)

ρ0e χi

 +

+ 
4∂Φ
∂Ti

 
Lm1m2ne

2D12
(e)kT

(T)

ρ0e χi R
 − 

4∂Φ
∂Ti

 
χe

χi
 
T0ekT

(n)

R
 .

In the case C3i → 1, from Eq. (25) we can obtain the thermophoresis rate of a nonvolatile liquid particle
Uth

(liq):

Uth
(liq) = − 

2kTsl
∗  (∇ Te)∞





2

3
 
η0e

η0i
 + 1 + 2 

cm
∗

R




 T0e g

(liq)

 Fres
 (liq) , (27)

where

Fres
 (liq) = FTsl

 (liq) + FσT
 (liq) ;

FTsl
 (liq) = 




1 + 

βR
′∗( T)

R




 f1

 (liq) + 
βR

∗ (T)

R
 f2

 (liq) + 
βB

∗( T)

R
 f3

 (liq) ;

FσT
 (liq) = 

T0eR

3kTsl
∗  η0i

 
∂σ

∂Ti

 f4
 (liq) ;

f1
 (liq) = 

kT
(T)

R
 + 

χe

χi
 ;   f2

 (liq) = 1 ;

f3
 (liq) = 1 − 

kT
(T)

R
 − 

χe

χi
 ;   f4

 (liq) = 
χe

χi
 ;

g(liq) = 1 + 
2χe

χi
 + 

2kT
(T)

R
 .

For C3i → 1, η0e
 ⁄ η0i → 0, and ρ0e

 ⁄ ρ0i → 0, from Eq. (25) we can obtain a formula for the thermopho-
resis of a solid nonvolatile particle:

Uth
(sol) = − 

2kTsl
∗  (∇ Te)∞




1 + 2 

cm
∗

R




 T0e g

(sol)

 Fres
(sol) , (28)
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where

Fres
(sol) = FTsl

(sol) ;

FTsl
(sol) = 




1 + 

βR
′∗( T)

R




 f1

 (sol) + 
βR

∗( T)

R
 f2

 (sol) + 
βB

∗( T)

R
 f3

 (sol) ;

f1
 (sol) = 

kT
(T)

R
 + 

χe

χi
 ;   f2

 (sol) = 1 ;   f3
 (sol) = 1 − 

kT
(T)

R
 − 

χe

χi
 ;   g (sol) = g(liq) .

In the case of a large volatile drop the formula for the rate of thermophoresis takes the form

Uth
(large) = − 

2kTsl
∗  (∇ Te)∞




1 + 

2η0e

3η0i




 T0e g

(large)

 Fres
 (large) , (29)

where

Fres
 (large) = FTsl

 (large) + FσT
 (large) + FσC

 (large) + FDsl
 (large) + Freact

 (large) ;

FTsl
 (large) = f1

 (large) ;   FσT
 (large) = 

T0eR

3kTsl
∗  η0i

 
∂σ

∂Ti

 f4
 (large) ;

FσC
 (large) = 

T0eR

3kTsl
∗  η0i

 
∂σ

∂C1i

 f5
 (large) ;   FDsl

 (large) = 
T0ekDslD12

(e)

kTsl
∗  f6

 (large) ;

Freact
 (large) = 

T0eD12
(e)ne

2

kTsl
∗  ρ0e

 







1 + 

2η0e

η0i

 + 
2ρ0e

ρ0i




 
m1

n2e
 − 




1 + 

2η0e

η0i




 
m2

n1e




 f6

 (large) ;

f1
 (large) = f4

 (large) = 
χe

χi

 










2∂Φ

∂C1i

 
ne

2 ρ1e ρ3iD12
(e)

n1en2e ρ0i
2 D13

(i)  + 1









 ;

f5
 (large) = 

ne
2 ρ1e ρ3i

n1en2e ρ0i
2 D13

(i)  



− 2D12

(e) 
∂Φ

∂Ti

 
χe

χi




 ;   f6

 (large) = 
∂Φ

∂Ti

 
χe

χi

 ;

g(large) = 1 + 
2χe

χi

 + 
4∂Φ

∂C1i

 
D12

(e)m1m3n3ine
2 χe

n2eD13
(i) ρ0i

2  χi

 +

+ 
2∂Φ

∂C1i

 
D12

(e)ne
2m1m3n3i

n2eD13
(i) ρ0i

2
 + 

2∂Φ

∂Ti

 
Lm1m2ne

2D12
(e)

ρ0e χi

 .

In the case of a large solid nonvolatile particle, when η0e
 ⁄ η0i → 0 and ρ0e

 ⁄ ρ0i → 0, formula (25) con-
verts to
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Uth
(large sol) = − 

2kTsl
∗  (∇ Te)∞

T0e g
(large sol) Fres

 (large sol) ; (30)

where

Fres
 (large sol) = FTsl

 (large sol) ;   FTsl
 (large sol) = f1

 (large sol) ;

f1
 (large sol) = 

χe

χi
 ;   g(large sol) = 1 + 

2χe

χi
 .

An analysis of the results obtained for moderately large particles showed that the total velocity of ther-
mophoretic motion Uth is determined by the combined influence of the separate effects: the thermal (~  FTsl) and
diffusion (~  FDsl) slippings, the variable surface tension (~  FσT, ~  FσC), and the reactive effect (~  Freact) from the
uncompensated phase transition of the volatile component, and since FTsl > 0, the effect of the thermal slipping
causes the drop to move toward a decrease in the temperature.

In view of the fact that ∂σ ⁄ ∂Ti < 0, we have FσT < 0 and the effect that is associated with the depend-
ence of the interphase surface tension on the temperature causes the particle to move toward an increase in the
temperature.

The sign of the quantity FσC depends on the sign of ∂σ ⁄ ∂C1i. If ∂σ ⁄ ∂C1i > 0, then FσC < 0, i.e., the
particle motion occurs toward an increase in the temperature. But if ∂σ ⁄ ∂C1i < 0, then FσC > 0, and the particle
moves toward a decrease in the temperature.

The sign of FDsl is determined by the sign of kDsl. It is known [1] that kDsl ~   (m2 − m1). If m2 > m1, then
kDsl > 0 and FDsl > 0, and, consequently, the effect of the diffusion slipping causes the particle to move in a
direction opposite to the direction of the external temperature gradient (∇ Te)∞. But if m1 > m2, then FDsl < 0
and the particle moves in the direction of the external temperature gradient (∇ Te)∞. For example, in the case
of evaporation of a water drop in a vapor-air mixture the molar mass of water is µ1 = 18⋅10−3 kg/mole, the
molar mass of air is µ2 = 29⋅10−3 kg/mole, m1 = µ1

 ⁄ NA, m2 = µ2
 ⁄ NA, (m2 − m1) > 0, and in this case the

particle moves toward a decrease in the temperature.
The sign of Freact is determined by the difference




1 + 

2η0e

η0i
 + 

2ρ0e

ρ0i
 + 

6cm
∗

R




 
m1

n2e
 − 




1 + 

2η0e

η0i
 + 

6cm
∗

R




 
m2

n1e
 ,

whose sign depends on m1, m2, n1e, and n2e. For example, in the case of motion of a drop of an aqueous
solution in a vapor-air mixture, m1

 ⁄ n2e < m2
 ⁄ n1e, since under normal conditions m1 < m2 and n2e >> n1e. Here

Freac < 0 and the particle moves toward an increase in the temperature.
From the aforesaid it follows that the general direction of particle motion in a two-component gaseous

mixture depends on the relation of the numerical values of FTsl, FσT, FσC, FDsl, and Freact. Specific results can
be obtained by performing calculations for selected mixtures. Evaluations show that the main contribution to
particle motion is made by capillary effects that are associated with the dependence of the surface tension on
the temperature (~  FσT) and the concentration of the substance (~  FσC) dissolved in the drop.

NOTATION

Uth, rate of thermophoresis, m/sec; U, velocity of motion of the mixture relative to the drop, m/sec;
(∇ Te)∞, constant temperature gradient of the external gaseous mixture at a large distance from the particle (the
gradient is prescribed at infinity), K/m; vr

(e)  and vΘ
(e),  radial and tangential components of the mass velocity,

m/sec; r, distance from the center of the particle to the point of the medium, m; R, radius of the aerosol parti-
cle, m; (r, Θ, ϕ), spherical coordinate system, m, rad, rad; η0e and η0i, mean value of the viscosities of the
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external gaseous mixture and inside the drop, N⋅sec/m2; ρ0e and ρ0i, density of the external gaseous mixture
and the solution drop, kg/m3; v(e) and v(i), velocities of the centers of inertia of the mixture outside and inside
the drop, m/sec; p(e) and p(i), pressures outside and inside the drop, Pa; p0

(e) and p0
(i), the same, the mean values,

Pa; χe and χi, thermal-conductivity coefficients of the external medium and the drop, W/(K⋅m); Te and Ti, tem-
peratures of the external medium and the drop, K; T0e and T0i, the same, the mean values, K; C1e and C1i,
dimensionless relative concentrations of the first component of the gaseous mixture (solvent) outside and inside
the drop; C01e and C01i, the same, the mean values; C2e, dimensionless relative concentration of the second
component of the gaseous mixture; C3i, the same, of the solute in the drop (dimensionless); m1, m2, and m3,
masses of the molecules of the first component (solvent), the second component of the gaseous mixture, and
the solute in the drop, kg; n1e and n2e, concentrations of the molecules of the first and second components of
the external gaseous mixture, 1/m3; n1i and n3i, concentrations of the molecules of the volatile substance and
the solute in the drop, 1/m3; L, specific heat of the phase transition, J/kg; NA = 6.02⋅1023 mole−1, Avogadro
constant; ϕ1, ϕ2, µ1, µ2, µ3, µ4, Ae, Be, γe, Qi, and Di, dimensional coefficients that depend on the parameters of
the mixture and the drop; Fres, FTsl, FDsl, FσT, FσC, and Freact, coefficients of the temperature gradient that
compose the expression for the rate; σT and σC, dimensionless coefficients that depend on the parameters of
the mixture and the drop.
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