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THEORY OF THERMOPHORESIS OF MODERATELY
LARGE DROPS OF CONCENTRATED SOLUTIONS
IN BINARY GASEOUS MIXTURES

Yu. I. Yalamov, O. N. Zenkina, and UDC 533.72
M. F. Barinova

We have derived a formula for the rate of thermophoresis of a volatile drop of a concentrated solution
in a binary gaseous mixture with allowance for known effects that are associated with all types of
dlipping of the gaseous mixture along the drop surface and jumps of temperature and concentrations.
An analysis of this formula has been performed for a number of limiting cases.

A drop of a binary solution that consists of molecules of a solute and a volatile solvent substance is
considered. Molecules of the volatile substance can evaporate or condense on the drop surface.

The drop is suspended in a two-component gaseous mixture with a temperature gradient ([JTe). pre-
scribed at infinity. The first component of the gaseous mixture is composed of molecules of vapor of the sol-
vent of the drop, while the molecules of the second component of the mixture do not undergo phase transitions
on the drop surface.

By virtue of the smallness of the relative temperature differences in the vicinity of the drop, we will
consider the transfer coefficients (the coefficients of viscosity, thermal conductivity, and diffusion) to be con-
stant quantities.

The motion will be described within the framework of approximations of [1, 2]. The basic approxima-
tion is a condition for linearization of the equations of hydrodynamics, heat conduction, and diffusion that de-
scribe the distribution of velocities and concentrations outside and inside the particle. The nonlinear terms in
these equations are much smaller the linear ones on condition that R|([JTe)«/T| << 1. For actual aerosol systems
this condition is realized with a large margin. For example, with radii of the aerosol particles in the range of
10°® m << R<<100010°® m and with temperatures of To=300 K, in order to violate the indicated condition,
UTe must vary in the range of 3M0° K/m << [(ATe)o| << 310° K/m. Under actual conditions such temperatures
are impracticable. Therefore, linearization of the equations is legitimate. To solve the problem, we use a spheri-
ca coordinate system (r, ©, ¢) whose origin is rigidly tied to the center of the particle (see Fig. 1). The rate
of thermophoresis is Uy, = -U.

The distributions of the mass velocity v, pressure p, and temperature T outside and inside the drop are
described by the system of linearized equations [1, 2]

r]e |:|2 V(e) — Dp(e) , r]i DZ V(i) — Dp(l) :
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Fig. 1. Aerosol particle in a spherical coordinate system whose origin co-
incides with the center of the particle.

The index e refers to quantities that characterize the medium outside the drop, and the index i, inside the drop.
In Egs. (1) ne and n; are the coefficients of dynamic viscosity; Cie = Nie/Ne; Coe = Npe/Ng; Ne = Nie+ Moy Cyj
= Mg/ Poi; Ca = mging/ Pois Poi = MNg; + MaNg;; CretCope =1 Cyi +C5 = 1.

Solutions of Egs. (1) can be found with the following conditions at infinity:

a) the radial V® and tangential V& components of the mass velocity at r — o are, respectively,

V= Ul cos@, V&= |U| sno; )
b) the pressure at r - « is
p9=p@ ©)

c) the temperature at r — o is
Te=Toet |(OT)| rcos©; (4
d) the relative concentration at r — o is
Cie= Cope- (5)

On the surface of the spherical drop of radius R the following boundary conditions are fulfilled:
a) dipping of the gaseous mixture on the interface of drop—external medium [1]

© 09 §E0 1500
(Vo -

I))|rR_C +

+
DaerD r GOmzR

Jdaa B orB” BRUEOTH | kaBs” 0T, 1T
TR O R R 0eOg, TeR 900 réom_

kD D(e)%- Oc BEGD) BmD)DaCe
+ + U O +
R O R EC

szlD(e) 5 [°Cy, 19C, [
R ro® roo Mg

(6)

in condition (6) the terms containing c,%, kfg, and kpg allow for isothermal, thermal, and diffusion dipping; the
terms containing PR " and PR allow for the influence of the curvature and deformation of the temperature
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field; the terms containing BY " and B allow for the influence of just the curvature of the temperature field;
the terms containing S " and BE® allow for the influence of the Barnett effects on the mixture slipping; the
coefficients o1 and oc are determined from the formulas [3]
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b) continuity of the radial and tangential components of the total-stress tensor:
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in conditions (7) and (8) the terms containing 00/0C,;, 00/0T, and o/R take into account the influence of the
surface tension on the particle motion;
¢) continuity of the radia flux of the first (volatile) component at each point of the drop surface

X .
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condition (9) is written without allowance for the volume thermal diffusion or spreading of the molecules of

the first component of the gaseous mixture in the Knudsen layer;
d) impermeability of the drop surface to the second component of the external binary mixture

C O
)| D12 ngm, aCleD _o- (10)
beVr Ir=R* '
pOe ar D:R

condition (10) is written without alowance for the volume diffusion or spreading of the molecules of the sec-
ond component in the Knudsen layer;
e) impermeability of the drop surface to the substance dissolved in the drop

0]
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n3|r|rR m3 Dar T

=0;
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f) continuity of the radial heat flux through the drop surface

(i)
: D32 py [BC, [
n3iV$I)|r:R+7lm3 . Dﬁ—arl'@ =0; (11)
=R
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condition (12) is written without allowance for spreading of the heat flux in the Knudsen layer;
0) the temperature jump of the first (volatile) component of the gaseous mixture in the Knudsen layer

dTel
(To-T)lr=k" 70 +KD (13)

=R

where k(rn and k‘r”) are the coefficients of the temperature jump and the reative concentration;
h) the jump of the relative concentration of the first component of the gaseous mixture in the Knudsen

layer
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where KV and K are the coefficients of the jump of the relative concentration and the temperature.

In the boundary conditions (6)-(14), o(Cy, T;) and ®(Cy, T;) are the coefficient of surface tension and
the relative concentration of saturated vapor of the volatile component, which depend on the values of Cy; and
T, at each point of the drop surface; Dﬁ? and D% are the coefficients of interdiffusion of the gaseous mixture
and the solution; cq, PS7, BED, BED, KV KD, kP, and K" are coefficients for the two-component gaseous
mixture with arbitrary ratios of the masses and concentrations of the components whose analytical form and
computational procedure are presented in [1, 3-16].

All the boundary conditions at large distances from the surface and on the particle surface itself, with
alowance for all effects that are associated with the presence of the Knudsen layer, in the case of thermopho-
resis of moderately large drops of concentrated solutions are given in the monograph [1].

Similar boundary conditions were used in [2] to construct a theory of thermophoresis of the same
drops. However, the boundary conditions and the result for the rate are represented there in a form that is valid
for the case where Cio << Cy.. Therefore, in this work we use boundary conditions that correspond to [1],
which gives a more general form for the rate of thermophoresis than in [2]. It should aso be noted that in this
work, as compared to [1], the dependence of the surface-tension coefficient on the concentration is taken into
account in formulas (7) and (8).

Solutions of Egs. (1) are sought in the form [1]

TezTOe+ﬁ+u_§'cose+|(|:|TP)m|I'COSO, (15)
r r
T,=Ty+H,rcosO, (16)
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Cie=Coe+ %2, 1 o : (17)

2
Cyi =Coy + Hyr oSO, (18)
B 0
vﬁe)=%+—e+|u|gcose+k, (19)
r 0 r
W =(Q +D, % cos@, (20)
B 0
v(é):%——e—lumsn@, (21)
re2r 0
v =—(Q+2D,r)sno, (22)
©®_ © Be (23)
P =po +r|0eFCOSO'
p” =pd +10n, D, r cos @ . (24)

By substituting functions (15)-(24) into the boundary conditions (6)-(14), it is possible to find the quan-
tities ¢l! ¢27 M1, M2, U3, Ha, Aev Bev Ve, in Di! and |U|

The objective of the investigations carried out is to determine the rate Uy, = —U; therefore, without
giving unwieldy expressions for the remaining enumerated quantities, for Uy, we write

0
_ 2krg (0T, £ (25)
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In formula (25) we introduce the notation
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Formula (25) provides the possibility of determining the rate of thermophoresis of the solution drop for an
arbitrary concentration Cg; of the dissolved substance. When C5 — 0, this formula becomes an expression for
the rate of thermophoresis of moderately large volatile drops of a pure substance:

where
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In the case Cy - 1, from Eqg. (25) we can obtain the thermophoresis rate of a nonvolatile liquid particle
Ugio:

ZkES ( DTO) )

ulio = £ (9 @
res
Et D
?ﬂ +1+2 RDT g"?
Oi O
where
I l li
=R R0
QT amn
Flio _ 07 4 Br Sf(nq R f(nq) BB ¢ (ic)
Td 0 R R R 3 '
oo - _ToeR 99 g,
3de Nai 9T,

M

K .

flio) - I; +&; glio=q,

1

oz, K Xe. oo _Xe.

3 - R ’ 4 - )
Xi Xi

-
(liq) _ 2X 2k'(I')
g "=1l+—+——.
x R
For C5 - 1, Noe/Naoi — 0, and poe/poi — O, from Eg. (25) we can obtain a formula for the thermopho-

resis of a solid nonvolatile particle:
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In the case of a large volatile drop the formula for the rate of thermophoresis takes the form

O
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In the case of a large solid nonvolatile particle, when ng/nei —» 0 and pee/Poi — 0, formula (25) con-

verts to
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An analysis of the results obtained for moderately large particles showed that the total velocity of ther-
mophoretic motion Uy, is determined by the combined influence of the separate effects: the thermal (~Ft4) and
diffusion (~Fpg) dippings, the variable surface tension (~Fg1, ~Foc), and the reactive effect (~Frexr) from the
uncompensated phase transition of the volatile component, and since Frg > 0, the effect of the thermal dlipping
causes the drop to move toward a decrease in the temperature.

In view of the fact that 00/0T; <0, we have F41 <0 and the effect that is associated with the depend-
ence of the interphase surface tension on the temperature causes the particle to move toward an increase in the
temperature.

The sign of the quantity Fgc depends on the sign of 00/0C,;. If d0/0Cy; >0, then Fsc <0, i.e, the
particle motion occurs toward an increase in the temperature. But if 00/0C,; <O, then Fgc >0, and the particle
moves toward a decrease in the temperature.

The sign of Fpg is determined by the sign of kpg. It is known [1] that kpg ~ (mp — my). If mp > my, then
kpg >0 and Fpg >0, and, consequently, the effect of the diffusion dipping causes the particle to move in a
direction opposite to the direction of the external temperature gradient (OTe).. But if my >mp, then Fpg <0
and the particle moves in the direction of the external temperature gradient (OT).. For example, in the case
of evaporation of a water drop in a vapor-air mixture the molar mass of water is Yy = 181073 kg/mole, the
molar mass of air is Y, = 2911073 kg/mole, m; = Hy/Na, My = Ho/Np, (Mp—my) >0, and in this case the
particle moves toward a decrease in the temperature.

The sign of Fet is determined by the difference

g 2 2 6c-Om, O 2 60
o+ n0e+ p0e+ mD_l_D__i_&_'__mD@,
O Noi  Poi Riohe O No R oNee

whose sign depends on my, mp, Ny, and Ny FOr example, in the case of motion of a drop of an agueous
solution in a vapor-air mixture, My/Noe <My/Nye, Since under normal conditions My <M, and Nye >> Ny Here
Freac <0 and the particle moves toward an increase in the temperature.

From the aforesaid it follows that the genera direction of particle motion in a two-component gaseous
mixture depends on the relation of the numerical values of Frg, Fo1, Foc, Fpg, and Frext. Specific results can
be obtained by performing calculations for selected mixtures. Evaluations show that the main contribution to
particle motion is made by capillary effects that are associated with the dependence of the surface tension on
the temperature (~F41) and the concentration of the substance (~F4c) dissolved in the drop.

NOTATION

Uy, rate of thermophoresis, m/sec; U, velocity of motion of the mixture relative to the drop, m/sec;
(OTo)w, constant temperature gradient of the external gaseous mixture at a large distance from the particle (the
gradient is prescribed at infinity), K/m; v{® and v, radial and tangential components of the mass velocity,
m/sec; r, distance from the center of the particle to the point of the medium, m; R, radius of the aerosol parti-
cle, m; (r, ©, ¢), spherical coordinate system, m, rad, rad; ng. and ng, mean value of the viscosities of the
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external gaseous mixture and inside the drop, NBSec/m?; Poe and pgi, density of the external gaseous mixture
and the solution drop, kg/m®; v and v, velocities of the centers of inertia of the mixture outside and inside
the drop, m/sec; p© and p®, pressures outside and inside the drop, Pa; p§ and p{, the same, the mean values,
Pa; Xe and ¥;, thermal-conductivity coefficients of the external medium and the drop, W/(K[h); T, and T;, tem-
peratures of the external medium and the drop, K; Tge and Tg;, the same, the mean values, K; Ci and Cyj,
dimensionless relative concentrations of the first component of the gaseous mixture (solvent) outside and inside
the drop; Cge and Cyj;, the same, the mean values; Coe, dimensionless relative concentration of the second
component of the gaseous mixture; Cs;, the same, of the solute in the drop (dimensionless); m,, m,, and m,
masses of the molecules of the first component (solvent), the second component of the gaseous mixture, and
the solute in the drop, kg; nie and nye, concentrations of the molecules of the first and second components of
the external gaseous mixture, Um3; ny; and ng, concentrations of the molecules of the volatile substance and
the solute in the drop, 1/m>; L, specific heat of the phase transition, Jkg; Na = 6.02010” mole™, Avogadro
constant; @4, ¢, K1, Ko, M3, a4, Ae Be Yoo Qi and D;, dimensiona coefficients that depend on the parameters of
the mixture and the drop; Fies, Frg, Fps: Fom, Foc: and Frex, COefficients of the temperature gradient that
compose the expression for the rate; o1 and oc, dimensionless coefficients that depend on the parameters of
the mixture and the drop.
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